Polarized fluorescence depletion reports orientation distribution and rotational dynamics of muscle cross-bridges.
نویسندگان
چکیده
The method of polarized fluorescence depletion (PFD) has been applied to enhance the resolution of orientational distributions and dynamics obtained from fluorescence polarization (FP) experiments on ordered systems, particularly in muscle fibers. Previous FP data from single fluorescent probes were limited to the 2(nd)- and 4(th)-rank order parameters, and , of the probe angular distribution (beta) relative to the fiber axis and , a coefficient describing the extent of rapid probe motions. We applied intense 12-micros polarized photoselection pulses to transiently populate the triplet state of rhodamine probes and measured the polarization of the ground-state depletion using a weak interrogation beam. PFD provides dynamic information describing the extent of motions on the time scale between the fluorescence lifetime (e.g., 4 ns) and the duration of the photoselection pulse and it potentially supplies information about the probe angular distribution corresponding to order parameters above rank 4. Gizzard myosin regulatory light chain (RLC) was labeled with the 6-isomer of iodoacetamidotetramethylrhodamine and exchanged into rabbit psoas muscle fibers. In active contraction, dynamic motions of the RLC on the PFD time scale were intermediate between those observed in relaxation and rigor. The results indicate that previously observed disorder of the light chain region in contraction can be ascribed principally to dynamic motions on the microsecond time scale.
منابع مشابه
ATP induces microsecond rotational motions of myosin heads crosslinked to actin.
We have used saturation transfer electron paramagnetic resonance (ST-EPR) to study the effect of ATP on the rotational dynamics of spin-labeled myosin heads crosslinked to actin (XLAS1). We have previously shown that ATP induces microsecond rotational motions in activated myofibrils or muscle fibers, but the possibility remained that the motion occurred only in the detached phase of the cross-b...
متن کاملSingle Molecule Fluorescence Image Patterns Linked to Dipole Orientation and Axial Position: Application to Myosin Cross-Bridges in Muscle Fibers
BACKGROUND Photoactivatable fluorescent probes developed specifically for single molecule detection extend advantages of single molecule imaging to high probe density regions of cells and tissues. They perform in the native biomolecule environment and have been used to detect both probe position and orientation. METHODS AND FINDINGS Fluorescence emission from a single photoactivated probe cap...
متن کاملFluctuations in polarized fluorescence: evidence that muscle cross bridges rotate repetitively during contraction.
Particular thiols of the myosin subfragment 1 moieties of single glycerinated muscle fibers are covalently labeled with rhodamine. By using appropriate solutions such fibers can be relaxed, be in rigor, or develop active isometric tension. The rhodamine is excited by polarized 514.5-nm laser light; the greater than 580-nm fluorescence is resolved into orthogonal components and the intensity of ...
متن کاملApplication of surface plasmon coupled emission to study of muscle.
Muscle contraction results from interactions between actin and myosin cross-bridges. Dynamics of this interaction may be quite different in contracting muscle than in vitro because of the molecular crowding. In addition, each cross-bridge of contracting muscle is in a different stage of its mechanochemical cycle, and so temporal measurements are time averages. To avoid complications related to ...
متن کاملA fluorescence photobleaching study of the microsecond reorientational motions of DNA.
We have conducted a polarized fluorescence photobleaching recovery (FPR) study of the rotational dynamics of ethidium azide labeled DNA. Polarized photobleaching experiments provide data on microsecond and millisecond molecular reorientation that complement the information available from nanosecond fluorescence depolarization studies. In polarized FPR experiments an anisotropic angular concentr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biophysical journal
دوره 83 2 شماره
صفحات -
تاریخ انتشار 2002